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Abstract. A simple coalescence model based on the same diagrammatic approach of antimatter production
in hadronic collisions as used previously for antideuterons is used here for the hadroproduction of mass-3
antinuclei. It is shown that the model is able to reproduce the existing experimental data on the t and 3He
production without any additional parameter.

PACS. 24.10.-i Nuclear reaction models and methods

1 Introduction

The increasing interest in the study of production of
light antinuclei in proton-proton and proton-nucleus colli-
sions is motivated by the presence of antinuclei in cosmic
rays which has potentially important implications on the
matter-antimatter asymmetry of the Universe. From this
point of view, it is important to determine the amount of
antimatter which can be produced in the galaxy through
the interaction of high-energy protons with the inter-
stellar gas. A new generation of experiments (AMS [1],
PAMELA [2]) should be able to measure the flux of anti-
matter in a near future.

The calculations of the t and 3He production cross-
sections reported here are based on the same diagram-
matic approach to the coalescence model as used re-
cently [3] to describe the d production in proton-proton
and proton-nucleus collisions.

The usual coalescence model [4] is based on the simple
hypothesis that the nucleons, produced during the colli-
sion of a beam and a target, fuse into light nuclei whenever
the momentum of their relative motion is smaller than a
coalescence radius p0 in the momentum space, which is
a free parameter of the model, usually fit to the experi-
mental data (see [5] for example). A simple diagrammatic
approach to the coalescence model developed in [6] pro-
vided a microscopic basis to the model. In this approach,
the parameter p0 is expressed in terms of the slope pa-
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rameter of the inclusive nucleon production spectrum and
of the wave function of the produced nucleus.

This diagrammatic approach has been generalized
in [3] to antideuteron production by taking into account
threshold effects and the anisotropy of the angular dis-
tributions. This approach can reproduce most existing
data without any additional parameter in energy domains
where the inclusive antiproton production cross-sections
are well known.

This article reports on the application of this approach
to the production of A = 3 antinuclei. It is the first micro-
scopic calculation of this cross-section to the knowledge
of the authors. In [7], the 3He production cross-section in
proton-proton collisions was calculated using the standard
coalescence model, with the parameter p0 taken from the
d production data.

Unfortunately, the experimental data required to be
compared with the calculations are limited. Only two sets
of experiments have measured the production of mass-3
antinuclei in proton-nucleus collisions. t and 3He were
discovered at IHEP (Serpukhov), with one experimen-
tal point measured for t and one for 3He [8,9], while in
the CERN experiment (SPS, WA 33) [10,11], four exper-
imental points were measured for t and eight for 3He. For
these latter data however, the t and 3He production cross-
sections were measured with respect to the pion produc-
tion cross-section at the same momentum. This requires
the corresponding experimental values of the pion produc-
tion cross-section to be known to extract the values of the
t and 3He production cross-sections.

The article is organized as follows. The main ideas
of the theoretical approach are described in sect. 2. The
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formalism is generalized to the case of A = 3 antinuclei
production in sect. 3. Section 4 is devoted to the results
and the comparison to the experimental data. A brief sum-
mary of the work is provided before the work is concluded
in the last section.

2 Diagrammatic approach to the coalescence
model

The main ideas of the diagrammatic approach of the co-
alescence model for nuclear fragment production are re-
minded here for the reader’s convenience [6]. The sim-
plest Feynman diagram of fig. 1 corresponding to fusion
of three nucleons is considered as a basis for the coales-
cence model. Here the symbol f designates the state of all
particles but nucleons 1, 2 and 3 which form the tritium or
the helium-3 nucleus produced in the final state (specified
by the t-symbol in the graph).

The physical picture behind this diagram is quite sim-
ple: the nucleons produced in a collision (block A) are
“slightly” virtual and can fuse without any further in-
teraction with the nuclear field. This diagram is not the
only possible contribution to the full transition amplitude.
However, as was shown in [12], where various diagrams
were considered, there are mutual cancellations of a num-
ber of diagrams. As a result, at sufficiently large deuteron
momenta the diagram of fig. 1 is the dominant one, and
at this stage the other diagrams can be neglected.

This diagram can be calculated using the technique
developed in [13]. The probability for three-nucleon coa-
lescence is given by

d3Wt = |M |2 mt

Et

d3pt

(2π)3
, (1)

wheremt in the mass of the t fragment and Et its energy in
the (beam)nucleon-(target)nucleon center-of-mass system
of the colliding nuclei. The probability for three-nucleon
production is then

d9W123 = |MA|2 mp

E1

d3p1

(2π)3
mp

E2

d3p2

(2π)3
mp

E3

d3p3

(2π)3
, (2)

where MA is the amplitude corresponding to the block A,
i.e., accounting for the inclusive production of nucleons 1,
2 and 3 and other particles in the final state f . To avoid
cumbersome expressions in eqs. (1) and (2), the factors
corresponding to colliding nuclei have been omitted since
they cancel in further calculations. Using the conventional
graph technique [13], the expression for M can be written
in the form

M =
∫

d4p1

(2π)4

∫
d4p2

(2π)4

∫
d4p3

(2π)4

× 2mp

m2
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Fig. 1. The simplest Feynman diagram corresponding to coa-
lescence of three nucleons into a tritium or 3He.

where M(1,2,3→t) is the vertex of coalescence of 1, 2, 3 into
t (proportional to the three-nucleon wave function in the
momentum space in the nonrelativistic approximation),
mp the nucleon mass, the three fractions being the indi-
vidual nucleon propagators of 1, 2 and 3. The integrals
have to be performed over energies and momenta of the
(virtual) particles. The delta-functions ensure energy mo-
mentum conservation at the t vertex, pt = (pt, Et), with
pt = p1+p2+p3 being the momentum of t, Et its energy.
The dependence of the amplitude MA on its variables (the
particle momenta) is also needed explicitly for the calcu-
lations. In lack of a reliable theoretical form, this can be
done in a “minimal” way, by using empirical shapes. The
inclusive nucleon spectra usually have a decreasing form
which can be approximated by a Gaussian function in the
center-of-mass frame:

Ep
d3σp

dp3
p

∝ exp
(−p2

p/Q
2
)
, (4)

where Q defines the slope parameter of the momentum
distribution. Accordingly, the amplitude MA can be writ-
ten in the following way:

MA = C exp
(
−p2

1 + p2
2 + p2

3

2Q2

)

= C exp
(
− p2

t

6Q2

)
exp

(
− q2
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)
exp

(
− 3p2

4Q2

)
, (5)

where

pt = p1 + p2 + p3,

p =
1√
3

(p1 − p2) ,

q =
1

2
√

3
(p1 + p2 − 2p3) . (6)

Assuming a statistical independence in the three-nucleon
production process, the inclusive production cross-section
can be written as the product of the three independent
probabilities:
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3
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, (7)
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Fig. 2. Dependence of the coalescence momentum p0 on the
slope parameter Q of the inclusive nucleon spectrum.

where σinel is the total reaction cross-section of the collid-
ing particles.

After integration of (3), taking into account (5)
and (7), and dividing by the incident particle flux, the
t production cross-section takes the form

Et
d3σt

dp3
t

=
96π6

m2
pσ

2
inel

|S|2E1
d3σ1

dp3
1

E2
d3σ2

dp3
2

E3
d3σ3

dp3
3

, (8)

with p1 = p2 = p3, pt = 3p1 and

S =
∫

exp
(
− q2

Q2
− 3

4
p2

Q2

)
Ψt (p,q)

d3p

(2π)3
d3q

(2π)3
, (9)

where Ψt (p,q) ∝M123→t is the wave function of the t (or
3He) system normalized by the condition∫

|Ψt (p,q)|2 d3p

(2π)3
d3q

(2π)3
= 1 . (10)

The factor 1/2, which accounts for nucleons and A = 3
nuclei spins, is included in (8). The three-nucleon wave
function is needed at sufficiently large momenta to com-
pute the amplitude. The wave function of [14] has been
used (see appendix A for discussion).

The structure of (8) is the same as that of the coales-
cence model and the S integral in (8) can be straightfor-
wardly related to the coalescence momentum:

p3
0 = 18

√
3π2

∫
d3p

(2π)3
d3q

(2π)3

× exp
(
− q2

Q2
− 3

4
p2

Q2

)
Ψt (p,q) . (11)

As an example, in fig. 2, the values of p0 as a function of
Q (eq. (11)) are presented for the wave function of [14].
Thus, in the approach based on the diagram of fig. 1 and
within the approximations made above, the coalescence
momentum p0 is not an adjustable parameter anymore,

but it is determined by the inclusive proton spectrum and
by the trinucleon wave function. Note that in that case, p0

depends on the momentum distribution and should thus
be energy and system dependent.

3 Application to three-antinuclei production

In order to generalize the diagrammatic approach of the
coalescence model to the production of A = 3 antinuclei
(noted as t further below), two effects have to be taken
into account: the anisotropy of angular distributions and
the threshold effects [3]. Isotropic angular dependence is
frequently assumed in nonrelativistic collisions. However,
in relativistic collisions, the momentum distributions are
strongly anisotropic and the low-energy approximation
cannot be used. To take this into account, formula (8)
can be easily generalized to any angular dependence. As-
suming the inclusive nucleon production cross-section to
be given by the (parameterized) amplitude M1 (p1),

E1
d3σ1

dp3
1

= |M1 (p1)|2 , (12)

In the general case, however, the inclusive (anti)nucleon
production is not a Gaussian as in relation (4), which de-
pends only on p2

p, but a functional form which depends on
the inclusive kinematic variables (see appendix B). The
cross-section for the t production can then be written
(see (8)) as

Et
d3σt

dp3
t

=
96π6

m2
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2
inel

[ ∫
M1 (p1)M2 (p2)M3 (p3)

×Ψt (p,q)
d3p

(2π)3
d3q

(2π)3

]2

. (13)

Note that, in (13), the coalescence momentum p0 does not
appear directly, in this model; it can be ignored although it
is a useful phenomenological parameter. This model could
be practically used directly to describe the production of
t. The production threshold of the antiparticle has to be
taken into account, however, in the cross-section calcu-
lation. The same procedure to evaluate the cross-section
near threshold as that used in [3], will be applied here.
In nucleon-nucleon collisions, the main reaction produc-
ing a t particle is NN → t + 5N . Near the threshold of
this reaction, the energy dependence of the t production
cross-section is mostly governed by the five-nucleons phase
space Φ

(√
s+m2

t − 2
√
sEt; 5mp

)
:

Et

d3σt

dp3
t

∝ Φ

(√
s+m2

t − 2
√
sEt; 5mp

)
. (14)

The phase space Φ for n particles with masses, momenta
and energies, mi, pi, and Ei, respectively, is defined in the
usual way (in the center of mass):

Φ(
√
s;m1,m2, . . .mn) =

n∏
i=1

1
(2π)3

d3pi

2Ei
δ3

(
n∑

i=1
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)
δ

(
n∑
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Ei −
√
s

)
.
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Fig. 3. Dependence of the threshold factor R(x), with x as
defined in the text.

It was calculated here by using the standard CERN li-
brary program (W515, subroutine GENBOD) [15].

√
s is

the total energy of the n particles in the center-of-mass
system.

A phenomenological correction factor R can thus be
introduced in formula (13) which then reads

R (x) =
Φ (x; 5mp)
Φ (x; 5 × 0)

, (15)

where x =
√
s+m2

t − 2
√
sEt, and where the denomina-

tor contains the high-energy limit of the phase space to
ensure R to be dimensionless and not to change the value
of the cross-section out of the space phase boundary. The
limits of R are thus

R→ 0, Et → Emax
t

=
s+m2

t − (5mp)
2

2
√
s

,

R→ 1,
√
s→ ∞ .

If p2
t
� (

√
s−Et)

2, the expression
√
s+m2

t − 2
√
sEt

can be replaced by
√
s−Et. This same approximation was

made in [3]. The functional dependence of R(x) is shown
in fig. 3.

4 Results on antinuclei production data

4.1 Status of the data

This section is introduced with a brief overview of the
current experimental situation on the antinuclei produc-
tion relevant to the present study, i.e., in proton-proton
and proton-nucleus collisions. The antinuclei production
in ion-ion collisions will be quoted only for completeness.

– As mentioned in the introduction, the experimental
data on the production of mass-3 antinuclei are ex-
tremely scarce, and much less informative than that on

antideuteron production, with only two experiments or
sets of experiments reporting on mass-3 antinuclei pro-
duction in proton-nucleus collisions [8–11]. Note that
there are no experimental data available on the pro-
duction of these antinuclei in proton-proton collisions.
The production of 3He has been observed recently in
various heavy-ion studies like Pb + Pb collisions at
ultra-relativistic incident energies [16]. These data are
out of the scope of the present work. They will not be
discussed here (see [3] for a discussion).

– Coalescence calculations require the antiproton pro-
duction cross-section to be known for antiproton mo-
menta equal to approximately one third of the A = 3
antinuclei momenta. Unfortunately, in most experi-
ments the differential cross-sections for antiproton and
A = 3 antinuclei productions were not measured at
this momentum. The p cross-section thus had to be ex-
trapolated to the appropriate kinematical region when
no other data were available, which of course, intro-
duces additional uncertainty in the calculations.

The three-nucleon wave functions needed in the calcu-
lations are much less well know than the deuteron wave
function. In addition, the same wave function will be used
for 3He and t nuclei (see appendix A). The inaccuracy
on the trinucleon wave functions is thus another source of
uncertainty. Nevertheless, the same 3-nucleon wave func-
tion used in the present work has been used previously to
successfully account for the 3He spectrum in [6]. So this
source of uncertainty in not the most important.

The total reaction cross-section used in the calcula-
tions was described by means of the parameterization pro-
posed in [17].

4.2 Proton-aluminium collision data at 70 GeV/c

The antinuclei produced in the Serpukhov experiments [8,
9] were obtained from a 70 GeV/c proton beam incident
on an aluminium target at 27 mrad scattering angles and
20 GeV/c for 3He, and 0◦ and 25 GeV/c for t. The in-
clusive antiproton cross-sections were available from [18]
and [19] in the same kinematical conditions.

In fig. 4 the p cross-section data from [8] are compared
with the results of fits using a functional form [20] (the
simple Gaussian form in (4) is no more used for the p
inclusive cross-section, see sect. 3). The solid curve corre-
sponds to a fit of a large sample of p + A → p data (654
experimental points) from 12 up to 400 GeV incident en-
ergies not including those from ref. [8] which were found
not to be compatible with the other sets of data [20] (see
appendix B). The calculated values are in fair agreement
with the two lowest-momentum data points (which were
obtained by extrapolation from measurements at other an-
gles). They overestimate the other data points by a factor
of 2 to 4. The dotted curve is a renormalization of the solid
curve by a factor ≈ 2.5 to fit these latter points, while the
dashed curve corresponds to the fit of the single set of data
points shown in the figure, whose parameters, however,
give quite poor agreement with the other sets of data [20].



R.P. Duperray et al.: A model for A = 3 antinuclei production in proton-nucleus collisions 601

Fig. 4. Inclusive differential cross-section for antiproton pro-
duction in p + Al collisions as a function of the total momen-
tum in the laboratory frame from [8], compared to calculated
values as discussed in the text. plab is the total momentum.
The measures are made at zero degree scattering angles in the
laboratory frame and the two first points were obtained by
extrapolation from measurements at other angles.

It must be emphasized that the low-momentum region,
say plab < 10 GeV/c, which is the useful region for the
coalescence calculations, with pp ≈ pt/3 is particularly
important here, with unfortunately no data point from
direct measurement available over the relevant range.

Figure 5 compares the calculations for the A = 3
production cross-section for the three parameterizations
shown in fig. 4 with the experimental data. The calcula-
tions using the global fit renormalized to the 70 GeV/c
data (see fig. 4) give by far the best agreement with the t
data (dotted curve). The other two sets of p cross-section
parameters overestimate the data by a sound order of
magnitude. This is apparently consistent with the larger p
cross-section predicted by these two sets of parameters for
the low-p momentum region to which the t cross-section is
most sensitive. The factor of about 2 between the p cross-
sections predicted by the two groups of parameters trans-
lates into a factor of about 10 for the t cross-section be-
cause of the approximately cubic dependence of the latter
on the p cross-section. However, it is somewhat puzzling
that this agreement is obtained with parameters which are
not consistent with the whole body of p data [20].

4.3 Proton-beryllium collision data at 200 GeV/c

In the CERN experiments [10,11], p, t and 3He were
produced in proton-beryllium collisions at 200, 210, and
240 GeV/c and detected at 0 degree scattering angle [11],
while p were measured at 200 GeV/c [10] on the same
targets. For these data, however, the production cross-

15 20 25 30 35 40 45 50 55
1E-11

1E-10

1E-9

1E-8

1E-7

E
d
3 σ/
d
p
3
(m
b
/G
eV

2 /
c
3 )

p
lab
(GeV/c)

Fig. 5. The inclusive differential cross-section for t [8] (open
circles) and 3He [9] (black circles) production by 70 GeV pro-
tons on Al target compared to calculations using the micro-
scopic model of coalescence and the same three different pa-
rameterizations of the antiproton production cross-section as
shown in fig. 4, with the same graphical conventions. plab is
the total momentum. The measures are made at 27 mrad scat-
tering angles for 3He and 0 for t in the laboratory frame.

Table 1. Values of the parameters of relation (16) obtained by
fitting the π− production cross-sections for 200 and 300 GeV/c
protons on beryllium.

Parameter C1 C2 C3 C4

Value 0.94 1.88 7.05 1.69

sections were measured as the ratios to the π− produc-
tion cross-sections at the same momentum. The knowledge
of the corresponding experimental π− production cross-
section, or a good parameterization of the latter, is thus
required in order to allow the values of the p, t and 3He
production cross-sections to be calculated.

Fortunately, the p + Be → π− + X cross-section has
been measured at 200 and 300 GeV/c incident momen-
tum in [21] in similar kinematical conditions as in the
CERN experiment. The measured distributions have been
fit by means of the following functional form, inspired from
ref. [22]:

E
d3σ

dp3

(
π−)

= C1σin (1 − x)C2 e−C3xe−C4p⊥ , (16)

where x = E∗/E∗
max (E∗ is the total energy of the inclu-

sive particle in the center-of-mass frame, σin is the total
reaction cross-section for the system in collision,

√
s is the

total energy of the system and p⊥ the transverse momen-
tum of the emitted particle). The values of the parameters
obtained are given in table 1 and the results of this fit
are presented in fig. 6. The parameterization (16) has
been used to extract the experimental p production cross-
sections [10]. The resulting cross-section values are com-
pared in fig. 7 with the results of the fit of a functional form
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Fig. 6. Experimental inclusive differential cross-section for π−

production in p + Be collisions [21] at 200 GeV/c (full circles)
and 300 GeV/c (full triangles) compared with the functional
form (16). plab is the total momentum. The measures are made
at 3.6 mrad scattering angles in the laboratory frame.

Fig. 7. Experimental inclusive differential cross-sections for p
production in p + Al collision (circles), and in p + Be collision
(×10−1, triangles), [18] compared with the results of fits using
a functional form (curves) [20]. plab is the total momentum.
The measures are made at 0 mrad scattering angles in the
laboratory frame.

to a large sample of p+A→ p+X data from 12 GeV/c up
to 400 GeV/c incident momenta [20]. It is seen that the
data points derived previously and the calculated values
are in fair agreement. This consistency gives confidence
to the following steps of the analysis for the evaluation
of the t and 3He production cross-sections. In fig. 8,
the t and 3He production cross-sectionsare compared to
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Fig. 8. Experimental inclusive differential cross-section for t
(full circles) and 3He (open circles) production in p + Al and
p + Be collisions, compared to calculations using the micro-
scopic model of coalescence (solid line). plab is the total mo-
mentum. The measures are made at 0 mrad scattering angles
in the laboratory frame.



R.P. Duperray et al.: A model for A = 3 antinuclei production in proton-nucleus collisions 603

calculations using the microscopic model of coalescence.
The agreement between experimental and calculated
values varies from poor to good. On the average, however,
data and calculations are within one order of magnitude.
This result should be considered as a success in account of
the numerous sources of uncertainties of the calculations
and of the limited accuracy of the measurements. Note
also that refs. [10] and [11] report experimental values in
disagreement by a factor of 2. Furthermore the t and 3He
production cross-sections, measured at the same momen-
tum, should be in principle close to each other (this fact is
clearly seen in the same experiment for t and 3He produc-
tion), whereas, in this experiment, they are quite different.

In terms of the usual coalescence model [4], the results
shown in fig. 8 correspond to a coalescence momentum in
the range 150–200 MeV. This is compatible with the ac-
cepted value of the coalescence momentum for light nuclei
formation [4]. For the Serpukhov data, the dotted curve in
fig. 4 corresponds to a coalescence momentum in the range
270–280 MeV, which is much higher. These latter data,
however, were found inconsistent with the other available
data in some respects in [20].

5 Conclusion

It has been shown in this work that the diagrammatic
approach to the coalescence model developed previously
can successfully (within the experimental uncertainties)
account for the mass-3 antinuclei production cross-section
in proton-nucleus collisions over wide kinematical condi-
tions without any additional parameter. These calcula-
tions require a good knowledge of the antiproton produc-
tion cross-section. These results would be further used to
calculate t and 3He flux in cosmic rays.

Appendix A.

In this appendix, we briefly remind how the wave func-
tions of the trinucleon is written in [14], while in this pa-
per slightly different definitions have been used. A useful
analytical parameterization of the bound trinucleon wave
function is obtained from solving the Faddeev equation
with the Reid soft-core potential.

The total wave function of the triton is written as a
sum of 3 Faddeev components:

Ψ =
3∑

i=1

Ψ i
t (qi,pi) .

In (9)-(13), we make use of only one Faddeev component
Ψt, while, due the exchange symmetry of two-nucleons in
the triton, all the three Faddeev components are identical.
Furthermore, Faddeev components Ψt are decomposed in
terms of their partial-wave components with respect to
the spin-isospin and angular-momentum basis φα(p̂, q̂):

Ψt(p,q) =
∑
α

ψα(p, q)φα(p̂, q̂) ,

with, if pi (i = 1, 2, 3) is the nucleon momentum

p =
1
2

(p1 − p2) ,q =
1

2
√

3
(p1 + p2 − 2p3) .

The following normalization is used∫
|Ψt (p,q)|2 d3pd3q =

∑
α

∫
dpdqp2q2 |ψα (p, q)|2 = 1 .

Note that, in these expressions, the definition of p and
the normalization differ from (6) and (10). Ψt is a sum of
the partial-wave states α which is a label for the following
physical quantities:
– L, the angular momentum of the pair of nucleons (1-2),
– l, the angular momentum of nucleon 3 according to the

center of the mass of the pair of nucleons (1-2),
– L, the total angular momentum of the triton.
– s, the spin of the pair of nucleons (1-2),
– S, the total spin of the triton,
– T , the isospin of the pair of nucleons (1-2).

Only two components with label α were taken into
account, α = 1, 2.
– For α = 1, L = l = L = 0, s = 1, S = 1/2 and T = 0.
– For α = 2, L = l = L = s = 0, S = 1/2 and T = 1.

Of course, the fact to consider only two partial-wave states
is an approximation which gives the probability of 89.25%
of trinucleon being in the partial-wave state α. In [14], the
parameterization for ψα (p, q) is given by

ψα (p, q) = pLpl
(
p2 +Ω2

p1

)−1
3∏

m=1

(
q2 +Ω2

qm

)−1

×
6∑

i=1

6∑
j=1

Cij

(p2 + µ2
i )

(
q2 + ν2

j

) ,
with Ωp1, Ωqm, µi, νj and Cij all depending on the partial-
wave label α. The numerical values of these coefficients can
be found in [14].

3He(ppn) and t(pnn) are considered to have the same
wave function. Altough, because of the presence of the
Coulomb interaction, these two wave functions are slightly
different, this difference is negligible compared to the other
uncertainties of present calculations.

Appendix B.

For the reader’s convenience, the parameterization of the
antiproton inclusive production from [20] and used in
sect. 4 is briefly described. A large number of p+A→ p+X
experimental data from 12 GeV/c up to 400 GeV/c and
1 ≤ A ≤ 208 have been used. The agreement obtained
with the data is good.

The following functional form has been proposed:

E
d3σ

dp3
= σineA

C1 ln
(√

s
C2

)
p⊥ (1 − xR)C3 ln(√s) e−C4xR

×
[
(
√
s)C5C6e

−C7p⊥ + (
√
s)C8C9e

−C10p2
⊥
]
,
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Table 2. Values of the parameters C1 from C10.

Parameter C1 C2 C3 C4 C5

Value(error) 0.16990(4) 10.28(13) 2.269(7) 3.707(27) 0.009205(2)

Parameter(error) C6 C7 C8 C9 C10

Value 0.4812(14) 3.3600(2) 0.063940(15) −0.1824(15) 2.4850(6)

where A is the mass target, xR = E∗/E∗
max the radial

scaling variable. E∗ and E∗
max are the total energy of the

inclusive particle and its maximum possible energy in the
center-of-mass frame, respectively. p⊥ is the component
of momentum transverse to the beam direction.

√
s is the

total centre-of-mass energy and σine is the total inelastic
cross-section. The parameters C1 from C10 are given in
table 2.
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